首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   5篇
  2022年   1篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2010年   3篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
11.
12.
Lipid-impregnated collodion (nitrocellulose) films have been frequently used as a fusion substrate in the measurement and analysis of electrogenic activity in biological membranes and proteoliposomes. While the method of fusion of biological membranes or proteoliposomes with such films has found a wide application, little is known about the structures formed after the fusion. Yet, knowledge of this structure is important for the interpretation of the measured electric potential. To characterize structures formed after fusion of membrane vesicles (chromatophores) from the purple bacterium Rhodobacter sphaeroides with lipid-impregnated collodion films, we used near-field scanning optical microscopy. It is shown here that structures formed from chromatophores on the collodion film can be distinguished from the lipid-impregnated background by measuring the fluorescence originating either from endogenous fluorophores of the chromatophores or from fluorescent dyes trapped inside the chromatophores. The structures formed after fusion of chromatophores to the collodion film look like isolated (or sometimes aggregated, depending on the conditions) blisters, with diameters ranging from 0.3 to 10 microm (average approximately 1 microm) and heights from 0.01 to 1 microm (average approximately 0.03 microm). These large sizes indicate that the blisters are formed by the fusion of many chromatophores. Results with dyes trapped inside chromatophores reveal that chromatophores fused with lipid-impregnated films retain a distinct internal water phase.  相似文献   
13.
The flash-induced kinetics of various characteristics of Photosystem II (PS II) in the thylakoids of oxygenic plants are modulated by a period of two, due to the function of a two-electron gate in the electron acceptor side, and by a period of four, due to the changes in the state of the oxygen-evolving complex. In the absence of inhibitors of PS II, the assignment of measured signal to the oxygen-evolving complex or to quinone acceptor side has frequently been done on the basis of the periodicity of its flash-induced oscillations, i.e. four or two. However, in some circumstances, the period four oscillatory processes of the donor side of PS II can generate period two oscillations. It is shown here that in the Kok model of oxygen evolution (equal misses and equal double hits), the sum of the concentrations of the S 0 and S 2 states (as well as the sum of concentrations of S 1 and S 3 states) oscillates with period of two: S 0+S 2S 1+S 3S 0+S 2S 1+S 3. Moreover, in the generalized Kok model (with specific miss factors and double hits for each S-state) there always exist such 0, 1, 2, 3 that the sum 0[S0] + 1[S1] + 2[S2] + 3[S3] oscillates with period of two as a function of flash number. Any other coefficients which are linearly connected with these coefficients, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbew7aLzaaja% aaaa!3917!\[\hat \varepsilon \]i = c1i + c2, also generate binary oscillations of this sum. Therefore, the decomposition of the flash-induced oscillations of some measured parameters into binary oscillations, depending only on the acceptor side of PS II, and quaternary oscillations, depending only on the donor side of PS II, becomes practically impossible when measured with techniques (such as fluorescence of chlorophyll a, delayed fluorescence, electrochromic shift, transmembrane electrical potential, changes of pH and others) that could not spectrally distinguish the donor and acceptor sides. This property of the Kok cycle puts limits on the simultaneous analysis of the donor and acceptor sides of the RC of PS II in vivo and suggests that binary oscillations are no longer a certain indicator of the origin of a signal in the acceptor side of PS II.Abbreviations PS II Photosystem II - P680 primary electron donor of reaction center of PS II - QA one electron acceptor plastoquinone - QB two electron acceptor plastoquinone - S n redox state of the oxygen evolving complex, where n=0,1,2,3 and 4 - Chl a chlorophyll a This paper is dedicated to the memory of Alexander Kononenko.  相似文献   
14.
In Rhodobacter sphaeroides chromatophores, cytochromes (cyt) c(1) and c(2) have closely overlapping spectra, and their spectral deconvolution provides a challenging task. As a result, analyses of the kinetics of different cytochrome components of the bc(1) complex in purple bacteria usually report only the sum cyt c(1) + cyt c(2) kinetics. Here we used newly determined difference spectra of individual components to resolve the kinetics of cyt c(1) and c(2) in situ via a least-squares (LS) deconvolution. We found that the kinetics of cyt c(1) and c(2) are significantly different from those measured using the traditional difference wavelength (DW) approach, based on the difference in the absorbance at two different wavelengths specific for each component. In particular, with the wavelength pairs previously recommended, differences in instrumental calibration led to kinetics of flash-induced cyt c(1) oxidation measured with the DW method which were faster than those determined by the LS method (half-time of approximately 120 micros vs half-time of approximately 235 micros, in the presence of antimycin). In addition, the LS approach revealed a delay of approximately 50 micros in the kinetics of cyt c(1) oxidation, which was masked when the DW approach was used. We attribute this delay to all processes leading to the oxidation of cyt c(1) after light activation of the photosynthetic reaction center, especially the dissociation of cyt c(2) from the reaction center. We also found that kinetics of both cyt c(1) and c(2) measured by the DW approach were significantly distorted at times longer than 1 ms, due to spectral contamination from changes in the b hemes. The successful spectral deconvolution of cyt c(1) and c(2), and inclusion of both cytochromes in the kinetic analysis, significantly increase the data available for mechanistic understanding of bc(1) turnover in situ.  相似文献   
15.
16.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit steady-state proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. In chromatophores of the purple bacterium Rhodobacter sphaeroides, this has been associated with the specific labeling of a surface-exposed aspartate-187 of the cytochrome b subunit of the bc(1) complex [Wang et al. (1998) Arch. Biochem. Biophys. 352, 193-198]. To explore the possible role of this amino acid residue in the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and the electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores from wild type (WT) and mutant cells, in which aspartate-187 of cytochrome b (Asp(B187)) has been changed to asparagine (mutant B187 DN). The kinetics and amplitude of phase III of the electrochromic shift of carotenoids, reflecting electrogenic reactions in the bc(1) complex, and of the redox changes of cytochromes and reaction center, were similar (+/- 15%) in both WT and B187DN chromatophores. DCCD effectively inhibited phase III of the carotenoid bandshift in both B187DN and WT chromatophores. The dependence of the kinetics and amplitude of phase III of the electrochromic shift on DCCD concentration was identical in WT and B187DN chromatophores, indicating that covalent modification of Asp(B187) is not specifically responsible for the effect of DCCD-induced effects of cytochrome bc(1) complex. Furthermore, no evidence for differential inhibition of electrogenesis and electron transport was found in either strain. We conclude that Asp(B187) plays no crucial role in the protonogenic reactions of bc(1) complex, since its replacement by asparagine does not lead to any significant effects on either the electrogenic reactions of bc(1) complex, as revealed by phase III of the electrochromic shift of carotenoids, or sensitivity of turnover to DCCD.  相似文献   
17.
Shinkarev VP  Crofts AR  Wraight CA 《Biochemistry》2001,40(42):12584-12590
The cytochrome bc(1) complex is the central enzyme of respiratory and photosynthetic electron-transfer chains. It couples the redox work of quinol oxidation and cytochrome reduction to the generation of a proton gradient needed for ATP synthesis. When the quinone processing Q(i)- and Q(o)-sites of the complex are inhibited by both antimycin and myxothiazol, the flash-induced kinetics of the b-heme chain, which transfers electrons between these sites, are also expected to be inhibited. However, we have observed in Rhodobacter sphaeroides chromatophores, that when a fraction of heme b(H) is reduced, flash excitation induces fast (half-time approximately 0.1 ms) oxidation of heme b(H), even in the presence of antimycin and myxothiazol. The sensitivity of this oxidation to ionophores and uncouplers, and the absence of any delay in the onset of this reaction, indicates that it is due to a reversal of electron transfer between b(L) and b(H) hemes, driven by the electrical field generated by the photosynthetic reaction center. In the presence of antimycin A, but absence of myxothiazol, the second and following flashes induce a similar ( approximately 0.1 ms) transient oxidation of approximately 10% of the cytochrome b(H) reduced on the first flash. From the observed amplitude of the field-induced oxidation of heme b(H), we estimate that the equilibrium constant for sharing one electron between hemes b(L) and b(H) is 10-15 at pH 7. The small value of this equilibrium constant modifies our understanding of the thermodynamics of the Q-cycle, especially in the context of a dimeric structure of bc(1) complex.  相似文献   
18.
Antimycin A is the most frequently used specific and powerful inhibitor of the mitochondrial respiratory chain. We used all-atom molecular dynamics (MD) simulations to study the dynamic aspects of the interaction of antimycin A with the Qi site of the bacterial and bovine bc1 complexes embedded in a membrane. The MD simulations revealed considerable conformational flexibility of antimycin and significant mobility of antimycin, as a whole, inside the Qi pocket. We conclude that many of the differences in antimycin binding observed in high-resolution x-ray structures may have a dynamic origin and result from fluctuations of protein and antimycin between multiple conformational states of similar energy separated by low activation barriers, as well as from the mobility of antimycin within the Qi pocket. The MD simulations also revealed a significant difference in interaction between antimycin and conserved amino acid residues in bovine and bacterial bc1 complexes. The strong hydrogen bond between antimycin and conserved Asp-228 (bovine numeration) was observed to be frequently broken in the bacterial bc1 complex and only rarely in the bovine bc1 complex. In addition, the distances between antimycin and conserved His-201 and Lys-227 were consistently larger in the bacterial bc1 complex. The observed differences could be responsible for a weaker interaction of antimycin with the bacterial bc1 complex.  相似文献   
19.
Adrenal cytochrome b(561) (cyt b(561)), a transmembrane protein that shuttles reducing equivalents derived from ascorbate, has two heme centers with distinct spectroscopic signals and reactivity towards ascorbate. The His54/His122 and His88/His161 pairs furnish axial ligands for the hemes, but additional amino acid residues contributing to the heme centers have not been identified. A computational model of human cyt b(561) (Bashtovyy, D., Berczi, A., Asard, H., and Pali, T. (2003) Protoplasma 221, 31-40) predicts that His92 is near the His88/His161 heme and that His110 abuts the His54/His122 heme. We tested these predictions by analyzing the effects of mutations at His92 or His110 on the spectroscopic and functional properties. Wild type cytochrome and mutants with substitutions in other histidine residues or in Asn78 were used for comparison. The largest lineshape changes in the optical absorbance spectrum of the high-potential (b(H)) peak were seen with mutation of His92; the largest changes in the low-potential (b(L)) peak lineshape were observed with mutation of His110. In the EPR spectra, mutation of His92 shifted the position of the g=3.1 signal (b(H)) but not the g=3.7 signal (b(L)). In reductive titrations with ascorbate, mutations in His92 produced the largest increase in the midpoint for the b(H) transition; mutations in His110 produced the largest decreases in DeltaA(561) for the b(L) transition. These results indicate that His92 can be considered part of the b(H) heme center, and His110 part of the b(L) heme center, in adrenal cyt b(561).  相似文献   
20.
Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949-1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0-0.65) and 0.31 Gy (0-9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09-3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose-response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号